
Worldwide, 5–10% of diabetes cases are type 1 diabetes 
mellitus (T1DM)1. Despite intensive research, T1DM is 
presently incurable. Over the past three decades, diabetes 
management has increasingly benefited from innovations 
in technologies aimed at diabetes care. The present era is 
witnessing the emergence, at an unprecedented scale, of 
innovative diabetes technologies aimed at improving out-
comes and easing the burden of diabetes management. 
Glucose monitoring has evolved from inaccurate bulky 
devices to factory-​calibrated continuous glucose-​sensing 
devices that are connected to smartphones. Advances in 
insulin formulations and insulin delivery, including insu-
lin pump therapy and glucose-​responsive insulin delivery, 
have led to more effective insulin dosing than was available 
previously. Furthermore, software tools are now available 
that systematically track and manage complex glucose and 
insulin delivery data.

This Review covers established and novel diabetes 
technologies used in the management of patients with 
T1DM. We describe currently available technologies and 
their effect on health outcomes, including recommenda-
tions on their clinical use. We also provide insights into 

diabetes technologies that are not yet widely adopted or 
that are under development.

Widely adopted diabetes technologies
In this section, we review diabetes technologies used 
routinely in daily clinical practice. Four areas are cov-
ered: insulin delivery, glucose-​sensing technologies, 
glucose-​responsive insulin delivery systems and tools 
for data management (Fig. 1). An overview of diabetes 
technologies and evidence supporting their use is pro-
vided in Table 1 and Table 2 using the levels of evidence 
following the American Diabetes Association (ADA) 
guidelines (Box 1).

Insulin delivery
Over a considerable time period, conventional insulin 
therapy comprised one or two daily injections of insulin 
with daily urine or capillary blood glucose measure-
ments. Following the publication of the Diabetes Control 
and Complications Trial in 1993 (ref.2), the treatment 
paradigm for T1DM shifted towards intensive insulin 
therapy based on frequent blood glucose monitoring and 
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flexible multiple daily administrations of insulin using 
an insulin pen or an insulin pump.

Insulin pens. Insulin pens contain insulin in a cartridge 
and incorporate a fine replaceable needle. Introduced 
in 1981 as convenient, easy-​to-use injection devices3, 
pens are widely used as a part of multiple daily injection 
(MDI) therapy and are continuously evolving. Pens with 
memory functions (for example, HumaPen Memoir, 
Eli Lilly, and NovoPen Echo, Novo Nordisk) or pen 
caps that track past doses (such as Timesulin, Patients 
Pending, and GoCap, Common Sensing) are available. 
Within the past 2 years, pens with built-​in Bluetooth 
connectivity have received regulatory approval in the 
USA (for instance, InPen, Companion Medical, and 
Esysta pen, Emperra Digital Diabetes Care). These 
smart pens enable users to track doses and automati-
cally transfer data via Bluetooth to diabetes management 
apps on smartphones, with automatic cloud upload for 
sharing data with health-​care professionals. However, 
no studies regarding the superiority of smart pens over  
conventional pens have been reported.

Insulin pumps. Insulin pumps date back to the 1970s4, 
but it took another 20 years for insulin pump therapy to 
become widely available. The increasing utilization of 
insulin pump therapy over the past 20 years has resulted 
from improvements in and increased reliability of pump 
technology, documented health benefits (which are still 
imperfect) and availability of rapid-​acting insulin ana-
logues. Utilization of pumps was further amplified by 
coverage by private insurance and public health-​care sys-
tems. Uptake and availability of insulin pump therapy vary 
considerably between and within countries5; data from 
large diabetes registries show that in Western countries 
(which are most adept at pump use), pump users represent 
40–60% of the population of patients with T1DM6,7.

Types of insulin pumps. Insulin pumps deliver short-​
acting or rapid-​acting insulin into the subcutaneous 
tissue at preprogrammed rates, normally half-​hourly to 
hourly (this rate is adjustable), with user-​activated boosts 
(also called boluses) at mealtimes via self-​inserted Teflon 

or steel catheters. In conventional or tethered pumps, the 
insulin reservoir of the pump and the transcutaneously 
placed cannula are connected via tubing that is 18–42 
inches long. Patch pumps comprise a very short insu-
lin infusion set that is typically embedded inside the 
pump housing or within the base part of pumps with 
a modular design8. Whereas tethered pumps are usu-
ally tucked into pockets or carried in pump pouches, 
patch pumps are attached directly to the user’s skin.  
A retrospective observational study, published in 2017, 
did not demonstrate any differences in HbA1c levels 
when patients using patch pumps were compared with 
those using traditional tethered pumps9.

Adjunctive technologies. Modern insulin pumps usu-
ally come with adjunctive features, such as bolus calcu-
lators to facilitate the calculation of meal and correction 
boluses, bolus profiles that include immediate and/or 
extended delivery of a calculated bolus dose to meet 
postprandial insulin requirements, and temporary 
basal rates to accommodate physical activity that results 
in acutely reduced insulin needs or stress or illness that 
results in acutely increased insulin needs. Use of these 
advanced features might improve glycaemic outcomes, 
including HbA1c levels10 and postprandial glycaemic 
excursions11,12.

Efficacy of insulin pump therapy. In adults with T1DM, 
the use of an insulin pump is associated with a modest 
0.3–0.6% reduction in HbA1c levels compared with the 
use of MDI therapy13–17, with those most poorly con-
trolled on MDI experiencing the greatest and often a 
substantial and clinically valuable improvement in 
HbA1c levels when switching to pump therapy13. The 
risk of severe hypoglycaemia is similar with the two 
methods or slightly lower in those using pumps, while 
quality of life is higher in pump users than in those using 
MDI13–17 (Table 1). Despite the high appeal of pumps for 
children and adolescents due to their increased flexibil-
ity and the subtly customizable insulin delivery, which is 
essential to paediatric needs, meta-​analyses and system-
atic reviews of randomized controlled trials (RCTs) that 
include paediatric populations13–16,18 are not as conclu-
sive as those in adults. Similar to the findings in adults, 
slightly lower HbA1c levels and apparently no difference 
in the risk of severe hypoglycaemia were reported in 
meta-​analyses of paediatric pump users compared with 
those using MDI therapy. Insulin requirements are usu-
ally lower when using a pump15,18, while rates of dia-
betic ketoacidosis (DKA) do not differ between pump 
and MDI therapy19. In children and adolescents using 
pumps (and their parents), quality of life and treatment 
satisfaction are similar to higher than they are in those 
using MDI14 (Table 2).

With respect to severe hypoglycaemia, however, 
these meta-​analyses should be interpreted with caution 
owing to several issues; the duration of clinical trials was 
too short for severe hypoglycaemia to occur, or partic-
ipation was limited intentionally or unintentionally to 
those with a very low baseline rate of hypoglycaemia. 
In addition, severe hypoglycaemia or hypoglycaemia 
unawareness might have been listed as specific exclusion 

Key points

•	Innovations in technologies have greatly benefited diabetes management.

•	Flexible ways of delivering insulin, such as insulin pump therapy, are increasingly 
popular.

•	Minimally invasive real-​time continuous glucose monitoring is progressing towards 
accurate, insulin-​dosing approved, factory-​calibrated systems and has become part of 
standard care for people with type 1 diabetes mellitus in many countries.

•	Automated glucose-​responsive insulin delivery systems, including threshold-​based 
suspend, predictive low glucose management insulin pump therapy and hybrid 
closed-​loop systems, offer means for further improvements in glycaemic control while 
reducing hypoglycaemia exposure.

•	Data management tools and applications for diabetes self-​management are helping 
people with type 1 diabetes mellitus and health-​care professionals to manage 
intricate, extensive data created by diabetes technologies.

•	Advances in bihormonal closed-​loop technology, bioartificial pancreas systems and 
smart insulin might further improve the care and management of people with type 1 
diabetes mellitus in the future.
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criteria in these trials, or early-​generation pumps and 
pump insulins might have been used with less favour-
able impact on glycaemic control. In a meta-​regression 
analysis, it was demonstrated that there is a significant 
reduction in hypoglycaemia in children and adolescents 
using pump therapy compared with those using MDI 
therapy; however, this reduction is not as large as that 
seen in adults13. The greatest reductions in the incidence 
of severe hypoglycaemia during insulin pump therapy 
occurred in those with the highest baseline levels of 
hypoglycaemia and in elderly individuals.

While on the whole the above-​mentioned meta-​
analyses of RCTs in paediatric and adult patients with 
T1DM cautiously favour insulin pump therapy over 
MDI therapy, observational studies published within 
the past 5 years more optimistically documented sus-
tained benefit over long periods of pump use across dif-
ferent populations, including reductions in DKA and 
severe hypoglycaemia20–25. This finding might reflect 
the fact that white middle-​income and high-​income 
patients more frequently adopt insulin pump therapy 
than those from ethnic minorities or low-​income back-
grounds7,26, factors associated with poorer glycaemic 
control per se27.

Glucose monitoring
Capillary blood glucose measurements. The most 
widely used method of glucose monitoring is meas-
uring capillary blood glucose levels using hand-​held 
portable metres in combination with glucose test strips 
and a lancet. Capillary testing should be performed 
at a frequency necessary to optimize diabetes control, 
usually six to ten times a day, though the actual num-
ber should be individualized28,29. More frequent capil-
lary blood tests correlate with improved HbA1c levels 
and reduced rates of acute dysglycaemia30,31. Similar 
to bolus calculators on insulin pumps, expert metres 

comprise integrated bolus advisers to calculate insulin 
dosages. RCTs within the past 10 years have shown a 
significant increase in the number of people achieving 
HbA1c targets32–34 and a reduction in hypoglycaemia in 
those using a bolus calculator compared with control 
individuals33,34.

Capillary blood glucose monitoring has its draw-
backs as blood is sampled intermittently, providing only 
snapshots of glucose concentrations even if performed 
frequently. Episodes of hyperglycaemia and hypogly-
caemia might therefore be missed and not factored into 
treatment decisions.

Continuous glucose monitoring. The emergence of con-
tinuous glucose monitoring (CGM) has been an impor-
tant step for the glucose-​monitoring field. Currently 
available CGM devices measure interstitial glucose 
concentrations subcutaneously at 1–5-minute intervals 
using enzyme-​tipped electrodes or fluorescence technol-
ogy. Readers, either stand-​alone devices or integrated 
into insulin pumps or mobile phones, display trans-
mitted interstitial glucose readings either in real-​time 
(real-​time CGM) or on demand when scanning (flash 
glucose monitoring) or simply collect data for retro-
spective readout and analysis (professional, masked or 
blinded CGM).

Real-​time CGM systems automatically display glu-
cose readings at regular intervals and utilize real-​time 
alarms when sensor glucose levels reach predefined 
thresholds regarding hypoglycaemia and hypergly-
caemia, as well as rate-​of-change alarms for rapid 
glycaemic excursion. Flash glucose monitoring sys-
tems (FreeStyle Libre, Abbott Diabetes Care), which 
were introduced in 2014, report glucose levels only 
when the user scans the sensor by holding a reader or 
a smartphone close to the sensor. Blinded CGMs are 
applied intermittently over a short period of time to 
provide more information about glycaemic excursions 
and patterns to the health-​care professional to facilitate 
changes in therapy and could serve as educational tools. 
Blinded CGM and flash glucose monitoring systems do 
not provide alarms.

While most CGMs still require calibration using 
capillary blood glucose readings, the Libre flash glu-
cose monitoring system is factory calibrated and does 
not require recalibration by the user35. Most CGM sys-
tems are minimally invasive and have a lifetime of 6–14 
days. An implantable sensor that lasts up to 6 months 
(Eversense, Senseonics Inc) is available in Europe36. 
Sensor implantation and removal require a minor  
surgical procedure by a trained health-​care profes- 
sional, unlike for short-​term CGM systems, which are 
self-​inserted by the user.

Continuous glucose monitoring uptake and use. A niche 
product in the past 10 years, CGM has now become the 
standard of care for people with T1DM37. Data presented 
in 2017 from the German/Austrian Diabetes Patienten 
Verlaufsdokumentation (DPV) registry and the T1D 
Exchange registry in the USA suggest that overall 
CGM use for all registry participants (DPV: n = 20,938; 
T1D Exchange: n = 8,186) is 18.4% (DPV) and 21.7% 
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Fig. 1 | Currently available diabetes technologies in 
type 1 diabetes mellitus. Diabetes technologies are 
divided into four areas: insulin delivery , glucose sensing, 
glucose-​responsive insulin delivery systems and data 
management tools.
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(T1D Exchange)38. Overall accuracy of the latest sensor 
generations measured as the mean relative absolute dif-
ference (MARD) versus a given laboratory standard is 
between 8% and 14%35,36,39–41; however, accuracy is lower 
when measuring in the hypoglycaemic range and when 
glucose levels are changing rapidly42,43. The technology 
has reached the proposed mark (MARD <10%) sufficient 
to allow patient self-​adjustment of insulin dosage without 
confirmatory capillary blood glucose measurements44,45. 
CGM systems have been approved for non-​adjunctive 
use in the USA (Dexcom G5 Mobile and Libre flash glu-
cose monitor, Abbott Diabetes Care) and in the European 
Union (G5 Mobile, Dexcom, and Libre flash glucose 
monitor and FreeStyle Navigator II, Abbott Diabetes 
Care). Confirmatory capillary glucose measurement is 
suggested at hypoglycaemia with Libre or when clinical 
symptoms do not match Libre sensor readings.

Data provided by CGM devices allow the limita-
tions of traditional glucose metrics such as HbA1c (for 
example, no information regarding hypoglycaemia or 
hyperglycaemia frequency and patterns) and capillary 
glucose measurements (for example, blood is sampled 
intermittently only, thus providing only snapshots of glu-
cose levels) to be overcome. Indeed, a consensus report 
published in 2017 defined measures of glycaemic control 
based on CGM and highlighted the importance of CGM 
technology in modern diabetes care46,47.

Efficacy of continuous glucose monitoring. RCTs and 
meta-​analyses using early-​generation devices were cau-
tious with respect to the overall benefit of CGM sys-
tems, particularly in children and young people with 
T1DM14,48–53. By contrast, data published in the past 10 
years more consistently report that the use of CGM is 

Table 1 | Evidence supporting the clinical use of different therapies in adults with T1DM

Therapy Findings (level of evidencea) Highest level of 
evidence

Refs

Insulin pump therapy

• Reduction in HbA1c compared with multiple 
daily injection therapy (A)

• Similar to reduced risk of severe 
hypoglycaemia compared with multiple daily 
injection therapy (A)

• Reduced insulin requirements (A)
• Improved quality of life and treatment 

satisfaction (A)
• Reduced cardiovascular mortality (B)

Systematic reviews 
and meta-​analyses 
of RCTs

13–17

Continuous glucose monitoring

Flash glucose monitoring • Reduction in non-​severe hypoglycaemia  
(A and C)

• Improvement in time in target glucose  
range (A)

• Improvement in glucose variability (A)
• Reduction in HbA1c levels (A and C)
• Improved quality of life and user  

satisfaction (C)

One RCT 63,65–67

Real-​time continuous glucose 
monitoring

• Reduction in HbA1c levels (A)
• Reduction in moderate to severe 

hypoglycaemia (A)
• Reduction in time spent in hyperglycaemia (A)
• Improvement in quality of life (A)
• Benefits of continuous glucose monitoring 

are seen irrespective of insulin delivery 
method (pump or pen) but are conditioned 
on high regular sensor usage (A)

Systematic reviews 
and meta-​analyses 
of RCTs

14,48–50,52,54,55,58

Glucose-​responsive insulin delivery

Threshold-​based suspension • Reduced risk of hypoglycaemia in patients 
who are prone to hypoglycaemia, particularly 
overnight (A)

• No apparent loss in overall glucose control (A)

RCTs 70–72,74

Predictive low-​glucose 
suspension

Further reduction in number and duration of 
diurnal and nocturnal hypoglycaemic events 
(A)

RCTs 76

Hybrid single-​hormone 
closed-​loop

• Safe use in outpatient settings (A)
• Increased time in target glucose range (A)
• Reduced time in hypoglycaemia (A)
• Reduced time in hyperglycaemia (A)
• Modest reduction in HbA1c levels (A)

Systematic review 
and meta-​analysis

85–88

RCT, randomized controlled trial; T1DM, type 1 diabetes mellitus. aBased on the American Diabetes Association (ADA) evidence-​
grading system for clinical recommendations28. For details of the grading system, see BOX 1.
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associated with an improvement in HbA1c levels, reduc-
tion in the incidence of mild to moderate hypoglycaemia 
and reduced variability in glucose levels54–59. While early 
analyses and guidelines favoured using CGM in com-
bination with pump therapy14,29,50,60, emerging evidence 
supports the use of CGM as part of MDI therapy59,61–63. 
As the technology is evolving fast, the older RTCs and 
meta-​analyses have limited validity.

Flash glucose monitoring. With a 2-week sensor life, 
factory calibration, satisfactory accuracy with an over-
all MARD of 11–14%, a small size and light weight, 
the Libre flash glucose monitoring system introduced 
in 2014 is particularly appealing and convenient for 
assessing glucose levels63,64. However, evidence on its 
effectiveness is limited63,65–67. An RCT showed that flash 
glucose monitoring in adults with well-​controlled T1DM 
reduced time spent in hypoglycaemia, reduced glucose 
variability and improved time in target range compared 
with self-​monitoring of capillary blood levels of glu-
cose with a median 15 scans per day63. The benefits of 
using the Libre system were identical for users of insulin 
pump therapy and MDI therapy. However, in a head-​
to-head comparison of flash glucose monitoring and 
conventional CGM in adults with T1DM and impaired 

awareness of hypoglycaemia, CGM more effectively 
reduced time spent in hypoglycaemia than did flash 
glucose monitoring68. In the paediatric population, no 
evidence is currently available regarding the effective-
ness of flash glucose monitoring64. Observational data 
link frequent scanning with the flash glucose monitoring 
device to improved outcomes69. Despite limited evidence 
from RCTs, flash glucose monitoring, a more afforda-
ble option of CGM, could certainly be regarded as an 
advance in the management of diabetes.

Glucose-​responsive insulin delivery
Automated suspension of insulin delivery at low glucose 
levels or when low glucose levels are predicted repre-
sents the early embodiment of technology-​enabled glu-
cose responsive regulation of insulin delivery to address 
the issue of hypoglycaemia. Closed-​loop approaches 
are more complex and address both the issues of  
hypoglycaemia and hyperglycaemia.

Threshold-​based insulin suspend. Released in 2009, the 
Medtronic Paradigm Veo (Medtronic Diabetes) uses 
threshold-​based insulin suspend. A revised version 
was approved in the USA in 2013 (MiniMed 530G). 
Threshold-​based insulin suspend systems interrupt 

Table 2 | Evidence supporting the use of therapies in children and adolescents with T1DM

Therapy Findings (level of evidencea) Highest level of 
evidence

Refs

Insulin pump therapy

• Similar to lower HbA1c compared with 
multiple daily injection therapy ; inconclusive 
benefit in younger children (A)

• Inconclusive effect on severe hypoglycaemia
• Improved quality of life and treatment 

satisfaction (A)
• Similar risk of diabetic ketoacidosis to daily 

injections (A)
• Lower insulin requirements than with 

multiple daily injection therapy (A)

Systematic reviews 
and meta-​analyses 
of RCTs

13–16,18

Continuous glucose monitoring

Flash glucose monitoring • Similar accuracy to real-​time continuous 
glucose monitoring requiring capillary 
glucose calibrations (C)

• No data on clinical effectiveness are  
available

Non-​controlled 
observational 
study

64

Real-​time continuous glucose 
monitoring

Inconclusive effect on HbA1c and 
hypoglycaemia; benefit conditioned on high 
regular use (A)

Systematic reviews 
and meta-​analyses

14,50,51,53,55,57

Glucose-​responsive insulin delivery

Threshold-​based suspension • Reduced risk of hypoglycaemia, particularly 
overnight (A)

• No apparent loss in overall glucose  
control (A)

RCTs 70,71,73

Predictive low-​glucose suspension Further reduction in number and duration  
of diurnal and nocturnal hypoglycaemic  
events (A)

RCTs 76–78

Hybrid single-​hormone closed-​loop • Safe use in outpatient settings (A)
• Increased time in target glucose range (A)
• Reduced time in hypoglycaemia (A)
• Reduced time in hyperglycaemia (A)

Systematic review 
and meta-​analysis

41,85,86

RCTs, randomized controlled trials; T1DM, type 1 diabetes mellitus. aBased on the American Diabetes Association (ADA) evidence-​
grading system for clinical recommendations28. For details of the grading system, see Box 1.
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insulin delivery when sensor glucose reaches a predefined  
low sensor threshold.

Multicentre randomized controlled70–72 and nonran-
domized studies73–75 (including in children and adoles-
cents70,71,73) in real-​life settings have demonstrated that 
automated insulin suspension is safe and reduces the fre-
quency and duration of overall and nocturnal hypoglycae-
mic episodes compared with insulin pump therapy alone70 
or sensor-​augmented pump therapy71,73 (Tables 1,2).  
In addition, threshold-​based suspend reduces the over-
all risk of severe and moderate hypoglycaemia in those 
with the highest risk, impaired hypoglycaemia awareness  
and the highest frequency of severe hypoglycaemia70,74.

Predictive low-​glucose insulin suspend. Pumps using 
predictive low-​glucose insulin suspend technology dis-
continue insulin delivery when hypoglycaemia is pre-
dicted by an algorithm. This feature was introduced in 
Europe and Australia in 2015 (MiniMed 640G pump, 
Medtronic Diabetes). A revised version of this pump was 
approved in the USA for those aged 16 years and older 
(MiniMed 630G pump).

In RCTs including adults76, children and adoles-
cents76–78, the use of predictive low-​glucose suspend 
technology reduces the exposure to nocturnal76–78 and 
overall hypoglycaemia78, including reduced frequency 
of nocturnal and diurnal episodes and a reduction in 
the incidence of lengthy nocturnal events. These benefits 
were achieved at the expense of mildly elevated levels of 
glucose overnight and in the morning76,77 or increased 
time in moderate hyperglycaemia78.

Closed-​loop insulin delivery. Closed-​loop systems (also 
called the artificial pancreas or automated insulin deliv-
ery systems) are more elaborate through the use of a 
control algorithm that automatically and continually 
modulates insulin delivery below and above the pre-​set 
rate based on sensor glucose levels.

Control algorithms used in academic and commercial 
closed-​loop systems include a proportional–integral– 
derivative (PID) controller79,80, a model predictive con-
troller (MPC)81, a controller based on fuzzy logic82, or a 
combination of MPC and PID for insulin and glucagon 
co-​delivery83. Dual-​hormone or bihormonal systems 
deliver both insulin and glucagon or another hormone84. 
Most systems adopt the hybrid approach characterized 
by manual administration of prandial boluses to miti-
gate absorption delay of subcutaneously administered  
rapid-​acting insulin.

According to two meta-​analyses of RCTs comparing 
artificial pancreas systems with control therapy (either 
conventional pump therapy or sensor-​augmented pump 
therapy) in outpatient settings85, closed-​loop therapy is 
associated with an increased percentage of time during 
which the sensor-​reported level of glucose is within 
the near normoglycaemic range and reduced hyper-
glycaemia and hypoglycaemia while modestly reduc-
ing HbA1c levels86,87. Results of these findings support 
the progression of this technology from research to  
mainstream clinical practice.

With the approval of the first hybrid closed-​loop 
system (MiniMed 670G pump, Medtronic) by the 
FDA in September 2016 based on a safety study41,88 
and its market introduction in the USA in early 2017, 
single-​hormone closed-​loop systems have entered 
mainstream clinical practice. Further tuning and 
refinements of the first generation of artificial pancreas 
systems are expected. Ultra-​rapid insulin analogues, 
such as faster insulin aspart, adjunctive therapies 
using, for example, pramlintide, a sodium/glucose 
cotransporter 1 (SGLT1; also known as SLC5A1) or a 
combined SGLT1 and SGLT2 inhibitor89, and inhaled 
insulin or ancillary technologies, such as site-​warming 
of the infusion site, might help to address issues of 
exercise-​induced hypoglycaemia and postprandial  
hyperglycaemia.

The interest in the artificial pancreas approach is 
underpinned by do-​it-yourself artificial pancreas sys-
tems developed and utilized by a small but vocal com-
munity of people believing strongly in the potential of 
the closed-​loop approach (OpenAPS90,91 or Loop).

Data management
Alongside the developments in insulin delivery and 
glucose monitoring that have been termed proximal 
technologies, advances have been made in the field of 
distal technologies that comprise devices and technol-
ogies used for communication, education, interven-
tion and remote provision of services. Distal diabetes 
technologies, including telehealth, mobile health appli-
cations, game-​based support, social platforms and 
patient portals, have been reviewed elsewhere92. In the 
context of this Review, we focus on cloud-​upload tech-
nologies and applications that help people with T1DM 

Box 1 | ADA evidence-​grading system for clinical practice recommendations28

Level of evidence – A
•	Clear evidence from well-​conducted, generalizable randomized controlled trials that 

are adequately powered, including the following:
-- Evidence from a well-​conducted multicentre trial
-- Evidence from a meta-​analysis that incorporated quality ratings in the analysis

•	Compelling nonexperimental evidence, that is, the all-​or-none rule developed by the 
Centre for Evidence-​Based Medicine at the University of Oxford, UK

•	Supportive evidence from well-​conducted randomized controlled trials that are 
adequately powered, including the following:

-- Evidence from a well-​conducted trial at one or more institutions
-- Evidence from a meta-​analysis that incorporated quality ratings in the analysis

Level of evidence – B
•	Supportive evidence from well-​conducted cohort studies

-- Evidence from a well-​conducted prospective cohort study or registry
-- Evidence from a well-​conducted meta-​analysis of cohort studies

•	Supportive evidence from a well-​conducted case–control study

Level of evidence – C
•	Supportive evidence from poorly controlled or uncontrolled studies

-- Evidence from randomized clinical trials with one or more major or three or more 
minor methodological flaws that could invalidate the results

-- Evidence from observational studies with high potential for bias (such as case series 
with comparison with historical controls)

-- Evidence from case series or case reports

•	Conflicting evidence with the weight of evidence supporting the recommendation

Level of evidence – E
•	Expert consensus or clinical experience
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and health-​care professionals to manage intricate data  
created by proximal technologies.

Data download. Downloading data from devices such 
as pumps and CGM monitors to computers and ulti-
mately the cloud enables the user to review summary 
statistics and to visualize patterns in glucose levels, 
including the ambulatory glucose profile93. Data are 
used to assist health-​care professionals, people with 
T1DM and caregivers to optimize therapy regimens, to 
help users to understand their individual patterns and to 
support self-​management. Routinely downloading and 
reviewing glycaemic data are associated with statistically 
significantly reduced levels of HbA1c (ref.94). However, 
only a small percentage of people with T1DM and/or 
caregivers routinely download and review their data94,95. 
Barriers to downloading have not been systematically 
evaluated but might include inconvenience, difficulties 
with the software and hardware and lack of training to 
interpret the data.

Software tools for downloading devices and data 
review can be operated by the health-​care professional or 
the patient. Features typically include summary tables, 
charts such as repeating patterns, trends in blood levels 
of glucose, an ambulatory glucose report93 and reviews 
of pump and CGM settings. Diabetes device companies 
offer proprietary tools (for example, Medtronic Carelink, 
Dexcom CLARITY, Abbott CoPilot, Roche Accu-​Chek 
360 and LifeScan OneTouch), but data aggregator portals 
exist, such as Glooko (now merged with Diasend). Many 
platforms enable users to link their personal accounts to 
a health-​care provider’s professional accounts for sharing 
and remote reviewing of the data, which enables more 
frequent dosing adjustments and faster clinical interven-
tions than if the patient and their health-​care provider 
rely on face-​to-face appointments.

Remote monitoring. CGM devices can send data con-
tinuously to the cloud, for instance, the Dexcom G5 
mobile app, the LibreLink app and MiniMed Connect. 
If enabled, third parties, such as partners and caregivers, 
can view users’ CGM traces and receive low glucose or 
other alerts on their own smartphone. The benefits of 
remote monitoring in daily living, apart from increased 
convenience, are yet to be formally evaluated in an  
RCT. Of note, the development of remote monitoring 
features was preceded and stimulated by the collaborative  
parent-​led Nightscout Project96,97.

Mobile diabetes applications. The use of mobile health 
apps, including diabetes apps, is increasingly popular. 
There are over 165,000 general health-​related apps and 
over 1,100 diabetes-​specific apps98. Diabetes apps might 
improve diabetes self-​management, as they offer a wide 
spectrum of features and activities ranging from sim-
ple logs and dosing reminders99,100 to bolus calculators 
and carbohydrate counting and provide incentives to 
use boluses and peer support101. Apps such as Bant102, 
Glooko, mySugr, One Drop and Tidepool103 enable users 
to keep a detailed log of parameters related to their dia-
betes on their phones. Although meta-​analyses and sys-
tematic reviews published in the past 3 years suggest that 

mobile apps and app-​based interventions to support dia-
betes self-​management improve HbA1c levels in patients 
with type 2 diabetes mellitus, evidence in patients with 
T1DM is limited104,105. Hence, providing evidence-​based 
recommendations on app use is difficult.

Clinical practice recommendations
The ADA28, the American Association of Clinical 
Endocrinologists  and American Col lege of 
Endocrinology (AACE/CE)106,107, the Endocrine Society 
(ES)108,109, the International Society of Pediatric and 
Adolescent Diabetes (ISPAD)29,110 and the National 
Institute for Health and Care Excellence (NICE)111–114 
provide recommendations and regular updates regard-
ing clinical indications for use of insulin pump therapy 
and CGM. Table 3 summarizes these guidelines. The 
latest developments, including flash glucose moni-
toring, predictive low-​glucose suspension and hybrid 
closed-​loop systems, as well as the use of mobile apps 
and non-​adjunctive use of CGM, have yet to be included 
in guidelines; however, position statements and practical 
guidelines on their use are under development115–119.

Ongoing work and future developments
Decision support systems
Traditionally, insulin delivery settings, such as insulin:-
carbohydrate ratios, correction factors and long-​acting 
insulin doses or basal insulin rates, were adjusted by 
health-​care professionals at follow-​up clinic visits on the 
basis of reviews of blood glucose diaries, glucose metre 
logs and insulin pump downloads. Currently, insulin 
dose self-​adjustment is an essential part of intensified 
insulin therapy and a core element of structured edu-
cation programmes for people with T1DM. However, 
tuning of insulin-​dosing parameters beyond the simple 
arithmetic of calculating insulin dosing for meals can be 
challenging. Multiple groups are developing automated 
decision support systems by algorithmically optimizing 
dosing recommendations120–122. Preliminary results look 
promising, and while most systems are still predomi-
nantly being used in the research setting, regulatory 
approval is expected soon for insulin-​dosing decision 
support systems in T1DM and type 2 diabetes mellitus123.

Intraperitoneal insulin delivery
From a physiological standpoint, intraperitoneal insulin 
delivery is attractive owing to a faster insulin absorp-
tion and action than the subcutaneous route of insulin 
delivery and first-​pass hepatic insulin extraction restor-
ing a metabolically more favourable positive portal to 
systemic insulin gradient. Although implantable pump 
therapy has been available for over three decades and 
a potential amelioration of metabolic and endocrine 
dysregulation in T1DM has been documented with this 
system, its use is limited124. Limitations of intraperito-
neal insulin delivery include the risk of complications, 
higher costs and limited clinical evidence from prospec-
tive RCTs. In a closed-​loop setting, a proof-​of-concept 
nonrandomized pilot trial compared fully automated 
closed-​loop delivering intraperitoneal insulin via 
DiaPort (Roche Diagnostics) with that of subcutaneous 
insulin delivery125. Results demonstrated higher time in 
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Table 3 | Professional society guidelinesa for the use of insulin pump therapy and CGM in T1DM

Indication or 
criterion

Children and adolescents Adults

Insulin pump therapy CGM Insulin pump therapy CGM

HbA1c • Recommended if HbA1c 
is persistently above the 
individual goal (ISPAD)

• Recommended if HbA1c  
levels are elevated on 
injection therapy (AACE/
ACE)

• In children and adolescents 
who have HbA1c levels <7.0% 
(53 mmol/mol), as it will 
assist in maintaining target 
HbA1c levels while limiting 
the risk of hypoglycaemia

• In children and adolescents 
with HbA1c ≥7.0%  
(53 mmol/mol) and who are 
able to use the devices on a 
nearly daily basis (ES)

• Patients with T1DM  
who do not reach 
glycaemic goals despite 
adherence to maximum 
MDI (AACE/ACE)

•HbA1c levels have 
remained high ( >8.5% 
(69 mmol/mol) or above) 
on MDI (NICE)

• Patients with HbA1c levels 
above and below target (ES)

• Hyperglycaemia (HbA1c level 
of 75 mmol/mol (9%) or higher) 
that persists despite testing at 
least ten times a day (NICE)

• Continue real-​time CGM  
only if HbA1c can be  
sustained at or below 7% 
(53 mmol/mol) and/or there 
has been a decrease in HbA1c 
of 2.5% (27 mmol/mol) or more 
(NICE)

Hypoglycaemia • If hypoglycaemia is a major 
problem (ISPAD)

• Frequent and severe 
hypoglycaemia (AACE/ACE)

• CGM recommended 
for patients with 
impaired awareness of 
hypoglycaemia (AACE, ADA , 
ES, ISPAD and NICE)

• History of severe 
hypoglycaemia (AACE)

• Frequent severe 
hypoglycaemia (NICE)

• Frequent hypoglycaemia 
(ADA) and nocturnal 
hypoglycaemia (ES)

• Inability to recognize 
or communicate about 
symptoms of hypoglycaemia 
(for example, because of 
cognitive or neurological 
disabilities) (NICE)

• Attempts to achieve 
target HbA1c levels with 
MDI result in the person 
experiencing disabling 
hypoglycaemia (NICE)

• Frequent severe 
hypoglycaemia and/
or hypoglycaemia 
unawareness (AACE/ACE)

• Hypoglycaemia unawareness 
(ADA and NICE)

• Frequent hypoglycaemic 
episodes (ADA)

• Frequent (more than 
two episodes a week) 
asymptomatic hypoglycaemia 
that is causing problems with 
daily activities (NICE)

• More than one episode a year 
of severe hypoglycaemia with 
no obviously preventable 
precipitating cause (NICE)

• Extreme fear of hypoglycaemia 
(NICE)

Hyperglycaemia, 
ketonaemia and 
glucose variability

• Patients with pronounced 
dawn phenomenon  
(AACE/ACE)

• Patients prone to ketosis 
(AACE/ACE)

• Widely fluctuating glucose 
levels (AACE/ACE)

Intermittent use in 
children and young people 
who continue to have 
hyperglycaemia despite 
insulin adjustment and 
additional support

• Patients who have  
very labile diabetes 
(erratic glucose control 
including recurrent DKA) 
(AACE/ACE)

• Significant dawn 
phenomenon (AACE/
ACE)

NA

Quality of life 
and psychosocial 
aspects

• If quality of life needs to be 
improved (ISPAD)

• If current treatment regimen 
compromises lifestyle  
(AACE/ACE)

• Children with pronounced 
needle phobia (AACE/ACE)

• Treatment option for 
children younger than 12 
years provided that MDI 
therapy is considered to be 
impractical or inappropriate 
(NICE)

NA Fear of hypoglycaemia 
(NICE)

NA

Education, 
training, 
adherence and 
follow-​up

Ideal paediatric candidates 
are those with motivated 
families who are committed 
to monitoring blood 
glucose ≥4 times per day and 
have a working understanding 
of basic diabetes 
management (AACE/ACE)

• In patients who are able to 
use the devices on a nearly 
daily basis (ES)

• Robust diabetes education, 
training and support are 
required for optimal CGM 
implementation and 
ongoing use (ADA)

• CGM users must know the 
basics of sensor insertion, 
calibration and real-​time 
data interpretation  
(AACE/ACE)

• Currently performing ≥4 
insulin injections and ≥4 
self-​monitored blood 
glucose measurements 
daily (AACE/ACE)

• Motivated to achieve 
optimal blood glucose 
control (AACE/ACE)

• Regular follow-​up  
with specialist team 
(AACE/ACE)

• When prescribing CGM, 
robust diabetes education, 
training and support are 
required for optimal CGM 
implementation and ongoing 
use (ADA)

• In patients who are willing and 
able to use these  
devices on a nearly daily  
basis (ES)

• CGM to be considered  
in adults who are willing  
to commit to using it at  
least 70% of the time  
and to calibrate it as  
needed (NICE)
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range (80 mg/dl to 140 mg/dl and 70 mg/dl to 180 mg/
dl), lower mean glucose and no difference with respect 
to percent time spent <70 mg/dl when insulin was deliv-
ered with the intraperitoneal route125. However, given 
the aforementioned limitations and the rapid develop-
ment of subcutaneous insulin-​based therapies (that is, 
ultra-​fast-acting analogues) and non-​insulin adjunctive 
therapies (for example, glucagon-​like peptide 1 (GLP1) 
agonist), the use of intraperitoneal delivery seems to be  
limited to people with life-​limiting issues related to  
subcutaneous insulin delivery.

Single-​port platform
Feasibility studies have demonstrated that glucose sens-
ing at the site of insulin delivery is possible126. Single-​
port devices are being developed that combine sensor 
glucose measurements with an insulin infusion cannula 
into a single subcutaneous insulin infusion set intended 
to simplify device insertion and site management127,128. 
This kind of device would be of particular benefit to 
children as they have a limited amount of skin areas for 
placement of sensors or insulin cannulas. However, dis-
cordance in insertion patterns (the cannula is replaced 
every 2–3 days, whereas the sensor is replaced every 
7–14 days) and reduced sensor accuracy during the first 
day after insertion remain limiting factors.

Bihormonal artificial pancreas
Bihormonal or dual-​hormone closed-​loop systems 
deliver glucagon (or another hormone) in addition to 
insulin84,129. Glucagon delivery is triggered when hypo-
glycaemia is impending or predicted. Two approaches 
have been adopted in terms of the underlying insulin 
delivery84,129. One approach tunes insulin delivery in 
a similar way to that of a single-​hormone closed-loop 
system, adding glucagon to reduce the residual risk of 
hypoglycaemia130. The other approach delivers insu-
lin aggressively and counteracts insulin over delivery  
with glucagon131.

Short-​term studies published to date have con-
firmed a reduction in hypoglycaemia risk with the use 
of glucagon85. However, such systems have increased 
complexity and an intricate developmental pathway. 
Efforts are underway to develop dual-​chamber pumps 
and glucagon that is stable at room temperature for use 
in bihormonal closed-​loop systems132. Long-​term data 
are needed to assess the safety and tolerability of chronic 
subcutaneous delivery of glucagon.

Apart from glucagon, other adjunctive therapies, 
including pramlintide and GLP1, to suppress post-​
prandial hyperglucagonaemia and associated hyper-
glycaemia have been evaluated in combination with 
close-​loop insulin delivery in people with T1DM in 
research facility settings133–135. Data collected so far 
suggest that co-​delivery of subcutaneously adminis-
tered pramlintide or GLP1 is beneficial to reduce post-
prandial glucose excursions compared with closed-loop 
delivery alone133–135.

Bioartificial pancreas
In addition to algorithm-​driven glucose-​responsive 
insulin delivery, biological approaches have been 
explored. These approaches include encapsulated 
islets136, glucose-​responsive polymer encapsulation of 
insulin and molecular modification of insulin137.

Islets, with their inherent ability to release insulin 
in response to glucose, are the main focus of research 
regarding the bioartificial pancreas. To circumvent 
the need for immunosuppression, islets can be encap-
sulated within a biocompatible semipermeable matrix 
that enables the passage of small molecules, such as 
glucose, insulin and oxygen, but prevents the entry of 
immune cells and antibodies136. Intravascular devices 
contain artificial capillaries and are connected to the 
host systemic circulation via vascular anastomoses, 
such as the deep femoral artery or a venous fragment of  
an arteriovenous anastomosis in the forearm, creating an 
intravascular shunt. Extravascular devices, subclassified 

Indication or 
criterion

Children and adolescents Adults

Insulin pump therapy CGM Insulin pump therapy CGM

Special 
populations

• For patients with 
microvascular 
complications and/or risk 
factors for macrovascular 
complications (AACE/ACE)

• Very young children  
(AACE/ACE)

• Athletes (AACE/ACE)
• Adolescents with eating 

disorders (AACE/ACE)
• Pregnant teenagers  

(AACE/ACE)

• CGM to be considered in 
neonates, infants and  
pre-​school children (NICE)

• CGM to be considered in 
children and young people 
who have comorbidities 
or who are receiving 
treatments that can make 
blood glucose control 
difficult (NICE)

• CGM to be considered in 
children and young people 
who undertake high levels 
of physical activity (NICE)

• No recommendations  
about the use of CGM in 
children less than 8 years  
of age (ES)

• Preconception (AACE/
ACE)

• Pregnancy (AACE/ACE)
• Competitive athletes 

(AACE/ACE)
• Patients with extreme 

insulin sensitivity (AACE/
ACE)

NA

CGM, continuous glucose monitoring; DKA , diabetic ketoacidosis; MDI, multiple daily injection; NA , not available; T1DM, type 1 diabetes mellitus; aAmerican 
Diabetes Association (ADA)28, American Association of Clinical Endocrinologists and American College of Endocrinology (AACE/ACE)106,107, Endocrine Society 
(ES)108,109, International Society of Pediatric and Adolescent Diabetes (ISPAD)29,110 and National Institute for Health and Care Excellence (NICE)111–114.

Table 3 (cont.) | Professional society guidelinesa for the use of insulin pump therapy and CGM in T1DM
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into microcapsular and macrocapsular devices, do not 
require the creation of intravascular shunts and could 
be transplanted into different sites, such as the perito-
neum, subcutaneous adipose tissue or renal capsule136. 
Limited data from human trials utilizing encapsulated 
islet xenografts or allografts show a transient reduction 
in total daily insulin requirements, including anecdotal 
reports of transient insulin independence138–140. With 
the rise of pancreatic endocrine cells derived from 
human embryonic stem cells, the use of pig islets and  
xenotransplantation has become less favourable136.

In polymer-​based smart insulin systems, insulin 
is encapsulated within glucose-​responsive polymeric 
matrix-​based vesicles or hydrogels embedded in large 
implants, transdermal patches, microparticles or 
nanoparticles137. Such matrices are compact during 
hypoglycaemia or normoglycaemia. Insulin is released 
in response to rising glucose levels, and consecutive 
structural transformations of the matrices promote 
the release of sequestered insulin. Candidate systems 
at advanced development stages have demonstrated 
their potential in preclinical in vitro studies and ani-
mal trials137. No human data are available. Other 
approaches focus on molecular modification of insulin, 
which involves the introduction of a glucose-​sensitive 

motif to the insulin molecule or its formulation, thus 
promoting an intrinsic glucose-​responsive activity137. 
Current candidate technologies rely on sequestration of 
active insulin hormone within the subcutaneous space 
or within the bloodstream (as inactive complexes), with 
enhanced release or activation only during hypergly-
caemia. At present, such strategies remain in the early 
stages of development.

Conclusions
Diabetes technology is enhancing care and management 
of people with T1DM. Innovations in glucose sensing 
and insulin delivery have reduced the burden of self-​
care and facilitated improved outcomes. A notable mile-
stone has been achieved with the translation of research 
into clinical use of algorithm-​driven glucose-​responsive 
insulin delivery in the form of a hybrid artificial pan-
creas system. In the coming decade, advanced closed-​
loop systems with add-​on data management features 
will become the standard of care for people with T1DM 
across all age groups, while the bioartificial pancreas and 
‘smart’ insulin strategies will take considerably longer to 
demonstrate safety and efficacy in humans.
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